Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 759
1.
Harmful Algae ; 134: 102623, 2024 Apr.
Article En | MEDLINE | ID: mdl-38705613

Microcystins release from bloom-forming cyanobacteria is considered a way to gain competitive advantage in Microcystis populations, which threaten water resources security and aquatic ecological balance. However, the effects of microcystins on microalgae are still largely unclear. Through simulated culture experiments and the use of UHPLC-MS-based metabolomics, the effects of two microcystin-LR (MC-LR) concentrations (400 and 1,600 µg/L) on the growth and antioxidant properties of three algae species, the toxic Microcystis aeruginosa, a non-toxic Microcystis sp., and Chlorella vulgaris, were studied. The MC-LR caused damage to the photosynthetic system and activated the protective mechanism of the photosynthetic system by decreasing the chlorophyll-a and carotenoid concentrations. Microcystins triggered oxidative stress in C. vulgaris, which was the most sensitive algae species studied, and secreted more glycolipids into the extracellular compartment, thereby destroying its cell structure. However, C. vulgaris eliminated reactive oxygen species (ROS) by secreting terpenoids, thereby resisting oxidative stress. In addition, two metabolic pathways, the vitamin B6 and the sphingolipid pathways, of C. vulgaris were significantly disturbed by microcystins, contributing to cell membrane and mitochondrial damage. Thus, both the low (400 µg/L) and the high (1,600 µg/L) MC-LR concentration inhibited algae growth within 3 to 7 days, and the inhibition rates increased with the increase in the MC-LR concentration. The above results indicate that the toxin-producing Microcystis species have a stronger toxin tolerance under longer-term toxin exposure in natural water environments. Thus, microcystins participates in interspecific interaction and phytoplankton population regulation and creates suitable conditions for the toxin-producing M. aeruginosa to become the dominant species in algae blooms.


Antioxidants , Marine Toxins , Microcystins , Microcystis , Photosynthesis , Microcystins/metabolism , Photosynthesis/drug effects , Antioxidants/metabolism , Microcystis/drug effects , Microcystis/growth & development , Microcystis/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Chlorella vulgaris/drug effects , Chlorella vulgaris/growth & development , Chlorella vulgaris/metabolism , Chlorophyll A/metabolism
2.
Harmful Algae ; 134: 102627, 2024 Apr.
Article En | MEDLINE | ID: mdl-38705620

Due to climate changes and eutrophication, blooms of predominantly toxic freshwater cyanobacteria are intensifying and are likely to colonize estuaries, thus impacting benthic organisms and shellfish farming representing a major ecological, health and economic risk. In the natural environment, Microcystis form large mucilaginous colonies that influence the development of both cyanobacterial and embedded bacterial communities. However, little is known about the fate of natural colonies of Microcystis by salinity increase. In this study, we monitored the fate of a Microcystis dominated bloom and its microbiome along a French freshwater-marine gradient at different phases of a bloom. We demonstrated changes in the cyanobacterial genotypic composition, in the production of specific metabolites (toxins and compatible solutes) and in the heterotrophic bacteria structure in response to the salinity increase. In particular M. aeruginosa and M. wesenbergii survived salinities up to 20. Based on microcystin gene abundance, the cyanobacteria became more toxic during their estuarine transfer but with no selection of specific microcystin variants. An increase in compatible solutes occurred along the continuum with extensive trehalose and betaine accumulations. Salinity structured most the heterotrophic bacteria community, with an increased in the richness and diversity along the continuum. A core microbiome in the mucilage-associated attached fraction was highly abundant suggesting a strong interaction between Microcystis and its microbiome and a likely protecting role of the mucilage against an osmotic shock. These results underline the need to better determine the interactions between the Microcystis colonies and their microbiome as a likely key to their widespread success and adaptation to various environmental conditions.


Fresh Water , Microbiota , Fresh Water/microbiology , Microcystis/physiology , Cyanobacteria/physiology , Cyanobacteria/metabolism , Cyanobacteria/genetics , Salinity , Microcystins/metabolism , Harmful Algal Bloom , Seawater/microbiology , Seawater/chemistry , France
3.
J Hazard Mater ; 471: 134439, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38677123

Microcystins (MCs) have a significant influence on aquatic ecosystems, but little is known about their terrestrial fate and impact. Here, we investigated the fate of two MCs (MC-LR and MC-RR) in the soil-earthworm system, with consideration of their congener-specific impact on earthworm health, soil bacteria, and soil metabolome. Although MCs had little acute lethal effect on earthworms, they caused obvious growth inhibition and setae rupture. Relative to MC-RR, MC-LR exhibited higher bioaccumulation and the resulting dermal lesions and deformation of longitudinal muscles. While the incorporation of both MCs into soils stimulated pathogenic bacteria and depressed oxidative stress tolerant bacteria, the response among soil nitrification and glutathione metabolism differed between the two congeners. The dissipation kinetics of MCs obeyed the first-order model. Earthworms stimulated soil N-cycling enzyme activities, increased the abundance of MC-degrading bacteria, and promoted bacterial metabolic functions related to glutathione metabolism, xenobiotics biodegradation, and metabolism of amino acids that comprise MCs, which accelerated the dissipation of MC-LR and MC-RR by 227% and 82%, respectively. These results provide evidence of significant congener differences in the terrestrial fate and impact of MCs, which will enable a better understanding of their role in mediating soil functions and ecosystem services.


Microcystins , Oligochaeta , Soil Microbiology , Soil Pollutants , Animals , Oligochaeta/metabolism , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Microcystins/metabolism , Microcystins/toxicity , Soil/chemistry , Glutathione/metabolism , Biodegradation, Environmental , Bacteria/metabolism , Bioaccumulation
4.
J Hazard Mater ; 471: 134373, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38678710

The cyanobacterial response to pharmaceuticals is less frequently investigated compared to green algae. Pharmaceuticals can influence not only the growth rate of cyanobacteria culture, but can also cause changes at the cellular level. The effect of diclofenac (DCF) as one of the for cyanobacteria has been rarely tested, and DCF has never been applied with cellular biomarkers. The aim of this work was to test the response of two unicellular cyanobacteria (Synechocystis salina and Microcystis aeruginosa) toward DCF (100 mg L-1) under photoautotrophic growth conditions. Such endpoints were analyzed as cells number, DCF uptake, the change in concentrations of photosynthetic pigments, the production of toxins, and chlorophyll a in vivo fluorescence. It was noted that during a 96 h exposure, cell proliferation was not impacted. Nevertheless, a biochemical response was observed. The increased production of microcystin was noted for M. aeruginosa. Due to the negligible absorption of DCF into cells, it is possible that the biochemical changes are induced by an external signal. The application of non-standard biomarkers demonstrates the effect of DCF on microorganism metabolism without a corresponding effect on biomass. The high resistance of cyanobacteria to DCF and the stimulating effect of DCF on the secretion of toxins raise concerns for environment biodiversity.


Biomarkers , Chlorophyll A , Diclofenac , Microcystis , Synechocystis , Microcystis/drug effects , Microcystis/metabolism , Microcystis/growth & development , Diclofenac/toxicity , Diclofenac/metabolism , Biomarkers/metabolism , Synechocystis/metabolism , Synechocystis/drug effects , Synechocystis/growth & development , Chlorophyll A/metabolism , Microcystins/metabolism , Chlorophyll/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Photosynthesis/drug effects , Anti-Inflammatory Agents, Non-Steroidal/pharmacology
5.
Sci Total Environ ; 929: 172590, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38642746

Harmful cyanobacterial blooms have increased globally, releasing hazardous cyanotoxins that threaten the safety of water resources. Constructed wetlands (CWs) are a nature-based and low-cost solution to purify and remove cyanotoxins from water. However, bio-mechanistic understanding of the biotransformation processes expected to drive cyanotoxin removal in such systems is poor, and primarily focused on bacteria. Thus, the present study aimed at exploring the fungal contribution to microcystin-LR and cylindrospermopsin biodegradation in CWs. Based on CW mesocosms, two experimental approaches were taken: a) amplicon sequencing studies were conducted to investigate the involvement of the fungal community; and b) CW fungal isolates were tested for their microcystin-LR and cylindrospermopsin degradation capabilities. The data uncovered effects of seasonality (spring or summer), cyanotoxin exposure, vegetation (unplanted, Juncus effusus or Phragmites australis) and substratum (sand or gravel) on the fungal community structure. Additionally, the arbuscular mycorrhizal fungus Rhizophagus and the endophyte Myrmecridium showed positive correlations with cyanotoxin removal. Fungal isolates revealed microcystin-LR-removal potentials of approximately 25 % in in vitro biodegradation experiments, while the extracellular chemical fingerprint of the cultures suggested a potential intracellular metabolization. The results from this study may help us understand the fungal contribution to cyanotoxin removal, as well as their ecology in CWs.


Biodegradation, Environmental , Fungi , Microcystins , Wetlands , Microcystins/metabolism , Fungi/metabolism , Bacterial Toxins/metabolism , Alkaloids/metabolism , Cyanobacteria Toxins , Marine Toxins/metabolism , Water Pollutants, Chemical/metabolism , Waste Disposal, Fluid/methods , Uracil/analogs & derivatives , Uracil/metabolism
6.
ACS Nano ; 18(18): 11828-11836, 2024 May 07.
Article En | MEDLINE | ID: mdl-38659192

As essential primary producers, cyanobacteria play a major role in global carbon and nitrogen cycles. Though the influence of nanoplastics on the carbon metabolism of cyanobacteria is well-studied, little is known about how nanoplastics affect their nitrogen metabolism, especially under environmentally relevant nitrogen concentrations. Here, we show that nitrogen forms regulated growth inhibition, nitrogen consumption, and the synthesis and release of microcystin (MC) in Microcystis aeruginosa exposed to 10 µg/mL amino-modified polystyrene nanoplastics (PS-NH2) with a particle size of 50 nm under environmentally relevant nitrogen concentrations of nitrate, ammonium, and urea. We demonstrate that PS-NH2 inhibit M. aeruginosa differently in nitrate, urea, and ammonium, with inhibition rates of 51.87, 39.70, and 36.69%, respectively. It is caused through the differences in impairing cell membrane integrity, disrupting redox homeostasis, and varying nitrogen transport pathways under different nitrogen forms. M. aeruginosa respond to exposure of PS-NH2 by utilizing additional nitrogen to boost the production of amino acids, thereby enhancing the synthesis of MC, extracellular polymeric substances, and membrane phospholipids. Our results found that the threat of nanoplastics on primary producers can be regulated by the nitrogen forms in freshwater ecosystems, contributing to a better understanding of nanoplastic risks under environmentally relevant conditions.


Microcystis , Nitrogen , Microcystis/drug effects , Microcystis/metabolism , Microcystis/growth & development , Nitrogen/chemistry , Nitrogen/metabolism , Microcystins/metabolism , Polystyrenes/chemistry , Particle Size , Microplastics/metabolism , Nanoparticles/chemistry , Nitrates/metabolism , Nitrates/chemistry , Urea/metabolism , Urea/chemistry , Urea/pharmacology
7.
J Hazard Mater ; 470: 134241, 2024 May 15.
Article En | MEDLINE | ID: mdl-38608594

Artemisinin, a novel plant allelochemical, has attracted attention for its potential selective inhibitory effects on algae, yet to be fully explored. This study compares the sensitivity and action targets of Microcystis aeruginosa (M. aeruginosa) and Chlorella pyrenoidosa (C. pyrenoidosa) to artemisinin algaecide (AMA), highlighting their differences. Results indicate that at high concentrations, AMA displaces the natural PQ at the QB binding site within M. aeruginosa photosynthetic system, impairing the D1 protein repair function. Furthermore, AMA disrupts electron transfer from reduced ferredoxin (Fd) to NADP+ by interfering with the iron-sulfur clusters in the ferredoxin-NADP+ reductases (FNR) domain of Fd. Moreover, significant reactive oxygen species (ROS) accumulation triggers oxidative stress and interrupts the tricarboxylic acid cycle, hindering energy acquisition. Notably, AMA suppresses arginine synthesis in M. aeruginosa, leading to reduced microcystins (MCs) release. Conversely, C. pyrenoidosa counters ROS accumulation via photosynthesis protection, antioxidant defenses, and by regulating intracellular osmotic pressure, accelerating damaged protein degradation, and effectively repairing DNA for cellular detoxification. Additionally, AMA stimulates the expression of DNA replication-related genes, facilitating cell proliferation. Our finding offer a unique approach for selectively eradicating cyanobacteria while preserving beneficial algae, and shed new light on employing eco-friendly algicides with high specificity.


Artemisinins , Chlorella , Microcystis , Photosynthesis , Reactive Oxygen Species , Microcystis/drug effects , Microcystis/metabolism , Chlorella/drug effects , Chlorella/metabolism , Artemisinins/pharmacology , Photosynthesis/drug effects , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Microcystins/metabolism
8.
J Hazard Mater ; 470: 134170, 2024 May 15.
Article En | MEDLINE | ID: mdl-38613957

Cyanobacterial blooms, often dominated by Microcystis aeruginosa, are capable of producing estrogenic effects. It is important to identify specific estrogenic compounds produced by cyanobacteria, though this can prove challenging owing to the complexity of exudate mixtures. In this study, we used untargeted metabolomics to compare components of exudates from microcystin-producing and non-microcystin-producing M. aeruginosa strains that differed with respect to their ability to produce microcystins, and across two growth phases. We identified 416 chemicals and found that the two strains produced similar components, mainly organoheterocyclic compounds (20.2%), organic acids and derivatives (17.3%), phenylpropanoids and polyketides (12.7%), benzenoids (12.0%), lipids and lipid-like molecules (11.5%), and organic oxygen compounds (10.1%). We then predicted estrogenic compounds from this group using random forest machine learning. Six compounds (daidzin, biochanin A, phenylethylamine, rhein, o-Cresol, and arbutin) belonging to phenylpropanoids and polyketides (3), benzenoids (2), and organic oxygen compound (1) were tested and exhibited estrogenic potency based upon the E-screen assay. This study confirmed that both Microcystis strains produce exudates that contain compounds with estrogenic properties, a growing concern in cyanobacteria management.


Estrogens , Machine Learning , Metabolomics , Microcystins , Microcystis , Microcystis/metabolism , Microcystis/growth & development , Microcystins/metabolism , Microcystins/analysis , Microcystins/chemistry , Estrogens/metabolism , Estrogens/chemistry
9.
J Microbiol ; 62(3): 249-260, 2024 Mar.
Article En | MEDLINE | ID: mdl-38587591

The proliferation of harmful cyanobacterial blooms dominated by Microcystis aeruginosa has become an increasingly serious problem in freshwater ecosystems due to climate change and eutrophication. Microcystis-blooms in freshwater generate compounds with unpleasant odors, reduce the levels of dissolved O2, and excrete microcystins into aquatic ecosystems, potentially harming various organisms, including humans. Various chemical and biological approaches have thus been developed to mitigate the impact of the blooms, though issues such as secondary pollution and high economic costs have not been adequately addressed. Red clays and H2O2 are conventional treatment methods that have been employed worldwide for the mitigation of the blooms, while novel approaches, such as the use of plant or microbial metabolites and antagonistic bacteria, have also recently been proposed. Many of these methods rely on the generation of reactive oxygen species, the inhibition of photosynthesis, and/or the disruption of cellular membranes as their mechanisms of action, which may also negatively impact other freshwater microbiota. Nevertheless, the underlying molecular mechanisms of anticyanobacterial chemicals and antagonistic bacteria remain unclear. This review thus discusses both conventional and innovative approaches for the management of M. aeruginosa in freshwater bodies.


Fresh Water , Microcystis , Microcystis/growth & development , Microcystis/drug effects , Microcystis/metabolism , Fresh Water/microbiology , Harmful Algal Bloom , Eutrophication , Ecosystem , Hydrogen Peroxide/metabolism , Reactive Oxygen Species/metabolism , Microcystins/metabolism , Photosynthesis , Climate Change
10.
Environ Pollut ; 348: 123878, 2024 May 01.
Article En | MEDLINE | ID: mdl-38548158

Addressing notorious and worldwide Microcystis blooms, mechanical algae harvesting is an effective emergency technology for bloom mitigation and removal of nutrient loads in waterbodies. However, the absence of effective methods for removal of cyanobacterial toxins, e.g., microcystins (MCs), poses a challenge to recycle the harvested Microcystis biomass. In this study, we therefore introduced a novel approach, the "captured biomass-MlrA enzymatic MC degradation", by enriching microcystinase A (MlrA) via fermentation and spraying it onto salvaged Microcystis slurry to degrade all MCs. After storing the harvested Microcystis slurry, a rapid release of extracellular MCs occurred within the initial 8 h, reaching a peak concentration of 5.33 µg/mL at 48 h during the composting process. Upon spraying the recombinant MlrA crude extract (about 3.36 U) onto the Microcystis slurry in a ratio of 0.1% (v/v), over 95% of total MCs were degraded within a 24-h period. Importantly, we evaluated the reliability and safety of using MlrA extracts to degrade MCs. Results showed that organic matter/nutrient contents, e.g. soluble proteins, polysaccharides, phycocyanin and carotenoids, were not significantly altered. Furthermore, the addition of MlrA extracts did not significantly change the bacterial community composition and diversity in the Microcystis slurry, indicating that the MlrA extracts did not increase the risk of pathogenic bacteria. Our study provides an effective and promising method for the pre-treatment of harvested Microcystis biomass, highlighting an ecologically sustainable framework for addressing Microcystis blooms.


Cyanobacteria , Microcystis , Microcystins/metabolism , Reproducibility of Results , Cyanobacteria/metabolism , Microcystis/metabolism , Biomass
11.
Sci Total Environ ; 926: 171802, 2024 May 20.
Article En | MEDLINE | ID: mdl-38508265

Selective serotonin reuptake inhibitor (SSRI) antidepressants are of increasing concern worldwide due to their ubiquitous occurrence and detrimental effects on aquatic organisms. However, little is known regarding their effects on the dominant bloom-forming cyanobacterium, Microcystis aeruginosa. Here, we investigated the individual and joint effects of two typical SSRIs fluoxetine (FLX) and sertraline (SER) on M. aeruginosa at physio-biochemical and molecular levels. Results showed that FLX and SER had strong growth inhibitory effects on M. aeruginosa with the 96-h median effect concentrations (EC50s) of 362 and 225 µg/L, respectively. Besides, the mixtures showed an additive effect on microalgal growth. Meanwhile, both individual SSRIs and their mixtures can inhibit photosynthetic pigment synthesis, cause oxidative damage, destroy cell membrane, and promote microcystin-leucine-arginine (MC-LR) synthesis and release. Moreover, the mixtures enhanced the damage to photosynthesis, antioxidant system, and cell membrane and facilitated MC-LR synthesis and release compared to individuals. Furthermore, transcriptomic analysis revealed that the dysregulation of the key genes related to transport, photosystem, protein synthesis, and non-ribosomal peptide structures was the fundamental molecular mechanism underlying the physio-biochemical responses of M. aeruginosa. These findings provide a better understanding of the toxicity mechanisms of SSRIs to microalgae and their risks to aquatic ecosystems.


Microcystis , Sertraline , Humans , Sertraline/toxicity , Fluoxetine/toxicity , Selective Serotonin Reuptake Inhibitors/toxicity , Ecosystem , Antidepressive Agents , Gene Expression Profiling , Microcystins/metabolism
12.
Ecotoxicol Environ Saf ; 274: 116191, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38460408

The reproduction toxicity of pubertal exposure to Microcystin-LR (MC-LR) and the underlying mechanism needs to be further investigated. In the current study, pubertal male ICR mice were intraperitoneally injected with 2 µg/kg MC-LR for four weeks. Pubertal exposure to MC-LR decreased epididymal sperm concentration and blocked spermatogonia proliferation. In-vitro studies found MC-LR inhibited cell proliferation of GC-1 cells and arrested cell cycle in G2/M phase. Mechanistically, MC-LR exposure evoked excessive reactive oxygen species (ROS) and induced DNA double-strand break in GC-1 cells. Besides, MC-LR inhibited DNA repair by reducing PolyADP-ribosylation (PARylation) activity of PARP1. Further study found MC-LR caused proteasomal degradation of SIRT6, a monoADP-ribosylation enzyme which is essential for PARP1 PARylation activity, due to destruction of SIRT6-USP10 interaction. Additionally, MG132 pretreatment alleviated MC-LR-induced SIRT6 degradation and promoted DNA repair, leading to the restoration of cell proliferation inhibition. Correspondingly, N-Acetylcysteine (NAC) pre-treatment mitigated the disturbed SIRT6-USP10 interaction and SIRT6 degradation, causing recovered DNA repair and subsequently restoration of cell proliferation inhibition in MC-LR treated GC-1 cells. Together, pubertal exposure to MC-LR induced spermatogonia cell cycle arrest and sperm count reduction by oxidative DNA damage and simultaneous SIRT6-mediated DNA repair failing. This study reports the effect of pubertal exposure to MC-LR on spermatogenesis and complex mechanism how MC-LR induces spermatogonia cell proliferation inhibition.


Marine Toxins , Microcystins , Sirtuins , Spermatogonia , Animals , Male , Mice , Apoptosis , Cell Proliferation , DNA Breaks, Double-Stranded/drug effects , DNA Repair , Marine Toxins/metabolism , Marine Toxins/toxicity , Mice, Inbred ICR , Microcystins/metabolism , Microcystins/toxicity , Semen , Sirtuins/drug effects , Sirtuins/metabolism , Spermatogonia/drug effects , Spermatogonia/metabolism
13.
Environ Sci Pollut Res Int ; 31(16): 24648-24661, 2024 Apr.
Article En | MEDLINE | ID: mdl-38448773

Cyanobacteria are known to produce diverse secondary metabolites that are toxic to aquatic ecosystems and human health. However, data about the cyanotoxins occurrence and cyanobacterial diversity in Pakistan's drinking water reservoirs is scarce. In this study, we first investigated the presence of microcystin, saxitoxin, and anatoxin in 12 water bodies using an enzyme-linked immunosorbent assay (ELISA). The observed cyanotoxin values for the risk quotient (RQ) determined by ELISA indicated a potential risk for aquatic life and human health. Based on this result, we made a more in-depth investigation with a subset of water bodies (served as major public water sources) to analyze the cyanotoxins dynamics and identify potential producers. We therefore quantified the distribution of 17 cyanotoxins, including 12 microcystin congeners using a high-performance liquid chromatography-high-resolution tandem mass spectrometry/mass spectrometry (HPLC-HRMS/MS). Our results revealed for the first time the co-occurrence of multiple cyanotoxins and the presence of cylindrospermopsin in an artificial reservoir (Rawal Lake) and a semi-saline lake (Kallar Kahar). We also quantified several microcystin congeners in a river (Panjnad) with MC-LR and MC-RR being the most prevalent and abundant. To identify potential cyanotoxin producers, the composition of the cyanobacterial community was characterized by shotgun metagenomics sequencing. Despite the noticeable presence of cyanotoxins, Cyanobacteria were not abundant. Synechococcus was the most abundant cyanobacterial genus found followed by a small amount of Anabaena, Cyanobium, Microcystis, and Dolichospermum. Moreover, when we looked at the cyanotoxins genes coverage, we never found a complete microcystin mcy operon. To our knowledge, this is the first snapshot sampling of water bodies in Pakistan. Our results would not only help to understand the geographical spread of cyanotoxin in Pakistan but would also help to improve cyanotoxin risk assessment strategies by screening a variety of cyanobacterial toxins and confirming that cyanotoxin quantification is not necessarily related to producer abundance.


Bacterial Toxins , Cyanobacteria , Drinking Water , Humans , Microcystins/metabolism , Pakistan , Ecosystem , Bacterial Toxins/analysis , Cyanobacteria Toxins , Cyanobacteria/metabolism , Drinking Water/analysis , Lakes/analysis
14.
Environ Pollut ; 345: 123491, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38346637

Though biodegradation is an important regulation pathway for microcystins (MCs) pollution, more consideration needs to be given to the potential risk associated with related biodegradation products (MC-BDPs). In this work, typical MCLR-BDPs were prepared and their toxicity was evaluated by protein phosphatases (PPs) inhibition assay. Results showed the initial ring opening of MCLR played a crucial role in detoxification. However, partial MCLR-BDPs still retained the critical structures and thus exhibited certain toxicity (2.8-43.5% of MCLR). With the aid of molecular simulation, the mechanism for the potential toxicity of BDPs targeting PP2A was elucidated. The initial ring opening made the loss of hydrogen bond Leu2←Arg89, and pi-H bond Adda5-His191, which was responsible for the significant reduction in the toxicity of MCLR-BDP. However, the key hydrogen bonds MeAsp3←Arg89, Glu6←Arg89, Adda5←Asn117, Adda5←His118, Arg4→Pro213, Arg4←Arg214, Ala1←Arg268, and Mdha7←Arg268, metal bond Glu6-Mn12+, and ionic bonds Glu6-Arg89, and Glu6-Mn22+ were preserved in varying degrees. Above preserved interactions maintained the interactions between PP2A and Mn2+ ions (reducing the exposure of Mn2+ ions). Above preserved interactions also hindered the combination of phosphate groups to Arg214 residual and thus exhibited potential toxicity.


Marine Toxins , Microcystins , Protein Phosphatase 2 , Microcystins/metabolism , Biodegradation, Environmental , Ions
15.
Environ Sci Pollut Res Int ; 31(13): 20133-20148, 2024 Mar.
Article En | MEDLINE | ID: mdl-38372914

Microcystins (MCs) are the most widespread and hazardous cyanotoxins posing a huge threat to agro-ecosystem by irrigation. Some adaptive metabolisms can be initiated at the cellular and molecular levels of plant to survive environmental change. To find ways to improve plant tolerance to MCs after recognizing adaptive mechanism in plant, we studied effects of MCs on root morphology, mineral element contents, root activity, H+-ATPase activity, and its gene expression level in cucumber during exposure and recovery (without MCs) periods. After being exposed to MCs (1, 10, 100 and 1000 µg L-1) for 7 days, we found 1 µg L-1 MCs did not affect growth and mineral elements in cucumber. MCs at 10 µg ·L-1 increased root activity and H+-ATPase activity partly from upregulation of genes (CsHA2, CsHA3, CsHA8, and CsHA9) expression, to promote nutrient uptake. Then, the increase in NO3-, Fe, Zn, and Mn contents could contribute to maintaining root growth and morphology. Higher concentration MCs (100 or 1000 µg L-1) inhibited root activity and H+-ATPase activity by downregulating expression of genes (CsHA2, CsHA3, CsHA4, CsHA8, CsHA9, and CsHA10), decreased contents of nutrient elements except Ca largely, and caused root growing worse. After a recovery, the absorption activity and H+-ATPase activity in cucumber treated with10 µg L-1 MCs were closed to the control whereas all parameters in cucumber treated 1000 µg L-1 MCs were even worse. All results indicate that the increase in H+-ATPase activity can enhance cucumber tolerance to MC stress by regulating nutrient uptake, especially when the MCs occur at low concentrations.


Cucumis sativus , Microcystins/metabolism , Ecosystem , Proton-Translocating ATPases/metabolism , Cell Membrane/metabolism , Minerals/metabolism , Plant Roots/metabolism
16.
Toxins (Basel) ; 16(2)2024 02 04.
Article En | MEDLINE | ID: mdl-38393160

Irrigation with water containing a variety of microcystins (MCs) may pose a potential threat to the normal growth of agricultural plants. To investigate the phytotoxicity of MC-LR at environmental concentrations on rice (Oryza sativa L.), the characteristics of uptake and accumulation in plant tissues, as well as a series of key physio-biochemical process changes in leaves of rice seedlings, were measured at concentrations of 0.10, 1.0, 10.0, and 50.0 µg·L-1 in hydroponic nutrient solutions for 7, 15, 20, and 34 days. Results showed that MC-LR could be detected in rice leaves and roots in exposure groups; however, a significant accumulation trend of MC-LR in plants (BCF > 1) was only found in the 0.10 µg·L-1 group. The time-course study revealed a biphasic response of O2•- levels in rice leaves to the exposure of MC-LR, which could be attributed to the combined effects of the antioxidant system and detoxification reaction in rice. Exposure to 1.0-50.0 µg·L-1 MC-LR resulted in significant depletion of GSH and MDA contents in rice leaves at later exposure times (15-34 days). Low MC-LR concentrations promoted nitric oxide synthase (NOS) activity, whereas high concentrations inhibited NOS activity during the later exposure times. The reduced sucrose synthase (SS) activities in rice exposed to MC-LR for 34 days indicated a decrease in the carbon accumulation ability of plants, and therefore may be directly related to the inhibition of plant growth under MC exposure. These findings indicate that the normal physiological status would be disrupted in terrestrial plants, even under exposure to low concentrations of MC-LR.


Marine Toxins , Microcystins , Oryza , Microcystins/toxicity , Microcystins/metabolism , Bioaccumulation , Hydroponics
17.
Toxins (Basel) ; 16(2)2024 02 17.
Article En | MEDLINE | ID: mdl-38393188

Common bloom-forming cyanobacteria produce complex strain-specific mixtures of secondary metabolites. The beneficial and toxic properties of these metabolite mixtures have attracted both research and public health interest. The advancement of mass spectrometry-based platforms and metabolomics data processing has accelerated the identification of new metabolites and feature dereplication from microbial sources. The objective of this study was to use metabolomics data processing to decipher the intracellular cyanopeptide diversity of six Planktothrix strains collected from Canadian lakes. Data-dependent acquisition experiments were used to collect a non-targeted high-resolution mass spectrometry dataset. Principal component analysis and factor loadings were used to visualize cyanopeptide variation between strains and identified features contributing to the observed variation. GNPS molecular networking was subsequently used to show the diversity of cyanopeptides produced by the Planktothrix strains. Each strain produced a unique mixture of cyanopeptides, and a total of 225 cyanopeptides were detected. Planktothrix sp. CPCC 735 produced the most (n = 68) cyanopeptides, and P. rubescens CPCC 732 produced the fewest (n = 27). Microcystins and anabaenopeptins were detected from all strains. Cyanopeptolins, microviridins and aeruginosins were detected from five, four and two strains, respectively. Cyanopeptolin (n = 80) and anabaenopeptin (n = 61) diversity was the greatest, whereas microcystins (n = 21) were the least diverse. Interestingly, three of the P. rubescens strains had different cyanopeptide profiles, despite being collected from the same lake at the same time. This study highlights the diversity of cyanopeptides produced by Planktothrix and further hints at the underestimated cyanopeptide diversity from subpopulations of chemotypic cyanobacteria in freshwater lakes.


Cyanobacteria , Microcystins , Microcystins/metabolism , Planktothrix , Lakes , Canada , Cyanobacteria/metabolism
18.
Sci Total Environ ; 920: 170914, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38354808

Ammonia and microcystin-LR (MC-LR) are both toxins that can be in eutrophic waters during cyanobacterial blooms. While previous studies have focused on the effects of ammonia exposure on fish neurobehavioral toxicity, little attention has been given to the effects of MC-LR and combined exposures to both. This study exposed adult female zebrafish to ammonia (30 mg/L) and MC-LR (10 µg/L) alone and in combination for 30 days to investigate their neurotoxic effects and underlying mechanisms. Behavioral results showed that exposure to ammonia and MC-LR, both alone and in combination, led to decreased locomotor activity and increased anxiety in fish. Histomorphological analysis revealed the formation of thrombi and vacuolization in the brain across all exposure groups. Exposure to ammonia and MC-LR resulted in significant increases in MDA contents, decreases in Mn-SOD activities, and alterations in GSH contents compared to the control. Single and combined exposure to ammonia and MC-LR also induced the release of inflammatory factors (IL-1ß and TNF-α) by activating the NOD/NF-κB signaling pathway. Furthermore, both ammonia and MC-LR significantly changed the expression of genes related to the glutamatergic and GABAergic systems, elevated Glu and GABA contents, as well as increased the Glu/GABA ratio, indicating that a shift towards increased Glu levels. Overall, these findings suggested that exposure to MC-LR and ammonia, individually and in combination, could decrease locomotor activity and increase anxiety of female zebrafish. This was likely due to brain damage from over-activated ROS and the release of pro-inflammatory cytokines, which led to a disruption in the balance of glutamatergic and GABAergic systems. However, there was no significant interaction between MC-LR and ammonia in fish neurobehavioral toxicity.


Marine Toxins , Water Pollutants, Chemical , Zebrafish , Animals , Female , Zebrafish/metabolism , Ammonia/toxicity , Ammonia/metabolism , Reactive Oxygen Species/metabolism , Glutamic Acid/metabolism , Microcystins/toxicity , Microcystins/metabolism , Inflammation/chemically induced , gamma-Aminobutyric Acid/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism
19.
Sci Total Environ ; 919: 170747, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38340819

Microcystis aeruginosa is a ubiquitous freshwater cyanobacterium best known for producing hepatotoxic microcystins; however, this common bloom-forming species also produces myriad biologically active and potentially deleterious other metabolites. Our understanding of the effects of these non-microcystin metabolites on fish is limited. In this study, we evaluated cytotoxicity of extracellular metabolites harvested from both microcystin-producing (MC+) and non-producing (MC-) strains of M. aeruginosa on rainbow trout (Oncorhynchus mykiss) cell lines derived from tissues of the brain, pituitary, heart, gonads, gills, skin, liver, and milt. We also examined the influence of M. aeruginosa exudates (MaE) on the expression of critical reproduction-related genes using the same cell lines. We found that exudates of the MC- M. aeruginosa strain significantly reduced viability in RTBrain, RTgill-W1, and RT-milt5 cell lines and induced significant cellular stress and/or injury in six of the eight cell lines-highlighting potential target tissues of cyanobacterial cytotoxic effects. Observed sublethal consequences of Microcystis bloom exposure occurred with both MC+ and MC- strains' exudates and significantly altered expression of developmental and sex steroidogenic genes. Collectively, our results emphasize the contributions of non-MC metabolites to toxicity of Microcystis-dominated algal blooms and the need to integrate the full diversity of M. aeruginosa compounds-beyond microcystins-into ecotoxicological risk assessments.


Cyanobacteria , Microcystis , Oncorhynchus mykiss , Animals , Microcystins/metabolism , Oncorhynchus mykiss/metabolism , Cell Line , Cyanobacteria/metabolism , Reproduction , Gene Expression
20.
J Hazard Mater ; 466: 133609, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38310846

The environmental risks resulting from the increasing antivirals in water are largely unknown, especially in eutrophic lakes, where the complex interactions between algae and drugs would alter hazards. Herein, the environmental risks of the antiviral drug arbidol towards the growth and metabolism of Microcystis aeruginosa were comprehensively investigated, as well as its biotransformation mechanism by algae. The results indicated that arbidol was toxic to Microcystis aeruginosa within 48 h, which decreased the cell density, chlorophyll-a, and ATP content. The activation of oxidative stress increased the levels of reactive oxygen species, which caused lipid peroxidation and membrane damage. Additionally, the synthesis and release of microcystins were promoted by arbidol. Fortunately, arbidol can be effectively removed by Microcystis aeruginosa mainly through biodegradation (50.5% at 48 h for 1.0 mg/L arbidol), whereas the roles of bioadsorption and bioaccumulation were limited. The biodegradation of arbidol was dominated by algal intracellular P450 enzymes via loss of thiophenol and oxidation, and a higher arbidol concentration facilitated the degradation rate. Interestingly, the toxicity of arbidol was reduced after algal biodegradation, and most of the degradation products exhibited lower toxicity than arbidol. This study revealed the environmental risks and transformation behavior of arbidol in algal bloom waters.


Indoles , Lakes , Microcystis , Sulfides , Chlorophyll A , Antiviral Agents/toxicity , Microcystins/toxicity , Microcystins/metabolism
...